116. Populating Next Right Pointers in Each Node (Medium)
Given a binary tree
struct TreeLinkNode {
TreeLinkNode *left;
TreeLinkNode *right;
TreeLinkNode *next;
}
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL
.
Initially, all next pointers are set to NULL
.
Note:
- You may only use constant extra space. $$O(1)$$
- You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).
For example,
Given the following perfect binary tree,
1
/ \
2 3
/ \ / \
4 5 6 7
After calling your function, the tree should look like:
1 -> NULL
/ \
2 -> 3 -> NULL
/ \ / \
4->5->6->7 -> NULL
Solution 1: Tree, level traverse, BFS
Time Complexity: $$O(n)$$
Space Complexity: $$O(n)$$
对于非递归的解法要稍微复杂一点,但也不算特别复杂,需要用到queue来辅助,由于是层序遍历,每层的节点都按顺序加入queue中,而每当从queue中取出一个元素时,将其next指针指向queue中下一个节点即可。代码如下:
version 1: 23ms
每一层都存一个NULL在结尾,方便next指针。
/**
* Definition for binary tree with next pointer.
* struct TreeLinkNode {
* int val;
* TreeLinkNode *left, *right, *next;
* TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
* };
*/
class Solution {
public:
void connect(TreeLinkNode *root) {
if (!root) return;
queue<TreeLinkNode*> q;
q.push(root);
q.push(NULL);
while (q.size() > 1) {
int size = q.size()-1;
for (int i = 0; i < size; ++i) {
TreeLinkNode* cur = q.front(); q.pop();
cur->next = q.front();
if (cur->left) {
q.push(cur->left);
q.push(cur->right);
}
}
q.pop(); // pop NULL in last level;
q.push(NULL);
}
}
};
version 2: 19ms
用vector
class Solution {
public:
void connect(TreeLinkNode *root) {
if (!root) return;
vector<TreeLinkNode*> level;
level.push_back(root);
while (!level.empty()) {
vector<TreeLinkNode*> tmp;
for (int i = 0; i < level.size(); ++i) {
level[i]->next = (i+1 < level.size()) ? level[i+1]:NULL;
if (level[i]->left) {
tmp.push_back(level[i]->left);
tmp.push_back(level[i]->right);
}
}
swap(level,tmp);
}
}
};
Solution 2: recursive, DFS
Time Complexity: $$O(n)$$
Space Complexity: $$O(n)$$
这道题实际上是树的层序遍历的应用,可以参考之前的博客Binary Tree Level Order Traversal 二叉树层序遍历,既然是遍历,就有递归和非递归两种方法,最好两种方法都要掌握,都要会写。下面先来看递归的解法,由于是完全二叉树,所以若节点的左子结点存在的话,其右子节点必定存在,所以左子结点的next指针可以直接指向其右子节点,对于其右子节点的处理方法是,判断其父节点的next是否为空,若不为空,则指向其next指针指向的节点的左子结点,若为空则指向NULL,代码如下:
class Solution {
public:
void connect(TreeLinkNode *root) {
if (!root) return;
if (root->left) {
root->left->next = root->right;
if (root->next) root->right->next = root->next->left;
}
connect(root->left);
connect(root->right);
}
};
Solution 3:
Time Complexity: $$O(n)$$
Space Complexity: $$O(1)$$
上面三种方法虽然叼,但是都不符合题意,题目中要求用O(1)的空间复杂度,所以我们来看下面这种碉堡了的方法。用两个指针start和cur,其中start标记每一层的起始节点,cur用来遍历该层的节点,设计思路之巧妙,不得不服啊:
class Solution {
public:
void connect(TreeLinkNode *root) {
if (!root) return;
// start: points to the start of each level
TreeLinkNode* start = root, *cur = NULL;
while (start->left) {
cur = start;
while (cur) {
cur->left->next = cur->right;
if (cur->next) cur->right->next = cur->next->left;
cur = cur->next;
}
start = start->left;
}
}
};
Solution 4: Hash Table