347. Top K Frequent Elements
Given a non-empty array of integers, return the k most frequent elements.
For example,
Given [1,1,1,2,2,3]
and k = 2, return [1,2]
.
Note:
- You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
- Your algorithm's time complexity must be better than O(n log n), where n is the array's size.
Solution 1: Hash Table, Heap 23ms
Time Complexity: $$O(n+nlogk)$$
这道题给了我们一个数组,让我们统计前k个高频的数字,那么对于这类的统计数字的问题,首先应该考虑用哈希表来做,建立数字和其出现次数的映射,然后再按照出现次数进行排序。我们可以用堆排序来做,使用一个最小堆来按照映射次数从小到大排列,只存当前遍历的数字中topk的数字。当size超过k时,把frequency最小的pop。
class Solution {
public:
vector<int> topKFrequent(vector<int>& nums, int k) {
unordered_map<int,int> m;
for (int& i:nums) ++m[i];
priority_queue<pair<int,int>, vector<pair<int,int>>, greater<pair<int,int>>> pq; // minheap
for (auto& a:m) {
pq.push({a.second, a.first});
if (pq.size() > k) pq.pop();
}
vector<int> res;
while (!pq.empty()) {
res.push_back(pq.top().second);
pq.pop();
}
return res;
}
};
Solution 2: Bucket Sort 19ms
Time Complexity: $$O(n)$$
我们还可以使用桶排序,在建立好数字和其出现次数的映射后,我们按照其出现次数将数字放到对应的位置中去,这样我们从桶的后面向前面遍历,最先得到的就是出现次数最多的数字,我们找到k个后返回即可,参见代码如下:
class Solution {
public:
vector<int> topKFrequent(vector<int>& nums, int k) {
unordered_map<int, int> m;
for (auto& a: nums) ++m[a];
vector<vector<int>> bucket(nums.size()+1);
for (auto& a: m) bucket[a.second].push_back(a.first);
vector<int> res;
for (int i = bucket.size()-1; i >= 0; --i) {
for (int j = 0; j < bucket[i].size(); ++j) {
res.push_back(bucket[i][j]);
if (res.size() == k) return res;
}
}
return res;
}
};