239. Sliding Window Maximum (Hard)
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3.
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
Hint:
- How about using a data structure such as deque (double-ended queue)?
- The queue size need not be the same as the window’s size.
- Remove redundant elements and the queue should store only elements that need to be considered.
Solution:
这道题给定了一个数组,还给了一个窗口大小k,让我们每次向右滑动一个数字,每次返回窗口内的数字的最大值,而且要求我们代码的时间复杂度为O(n)。提示我们要用双向队列deque来解题,并提示我们窗口中只留下有用的值,没用的全移除掉。果然Hard的题目我就是不会做,网上看到了别人的解法才明白,解法又巧妙有简洁,膜拜啊。大概思路是用双向队列 deque 保存数字的下标,遍历整个数组,如果此时队列的首元素是i - k的话,表示此时窗口向右移了一步,则移除队首元素。然后比较队尾元素和将要进来的值,如果小的话就都移除,然后此时我们把队首元素加入结果中即可,参见代码如下:
c++ version:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> res;
deque<int> q;
for (int i = 0; i < nums.size(); ++i) {
if (!q.empty() && q.front() == i-k) q.pop_front(); // window move to right
while(!q.empty() && nums[q.back()] < nums[i]) q.pop_back(); // pop small values
q.push_back(i); // deque stores idxs of values in decreasing order
if (i >= k-1) res.push_back(nums[q.front()]); // push max in the current window
}
return res;
}
java version
public class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums.length == 0 || k <= 0) return new int[0];
int[] res = new int[nums.length-k+1];
int r = 0;
Deque<Integer> dq = new ArrayDeque<>();
for (int i = 0; i < nums.length; ++i) {
// remove numbers out of range k
if (!dq.isEmpty() && dq.peekFirst() == i-k) dq.pollFirst();
// remove smaller numbers in k range as they are useless
while (!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]) dq.pollLast();
// dq contains index... nums contains content
dq.offerLast(i);
if (i >= k-1) res[r++] = nums[dq.peekFirst()];
}
return res;
}
}