188. Best Time to Buy and Sell Stock IV (Hard)
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Solution 1: 6ms
这道题实际上是之前那道 Best Time to Buy and Sell Stock III 买股票的最佳时间之三的一般情况的推广,还是需要用动态规划Dynamic programming来解决,具体思路如下:
这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j]),
其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值后相比,两者之中取较大值,而全局最优比较局部最优和前一天的全局最优。
但这道题还有个坑,就是如果k的值远大于prices的天数,比如k是好几百万,而prices的天数就为若干天的话,上面的DP解法就非常的没有效率,应该直接用Best Time to Buy and Sell Stock II 买股票的最佳时间之二的方法来求解,所以实际上这道题是之前的二和三的综合体,代码如下:
class Solution {
int solveMaxProfit(vector<int>& prices) {
int res = 0;
for (int i = 1; i < prices.size(); ++i) {
res += max(prices[i]-prices[i-1],0);
}
return res;
}
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.empty()) return 0;
if (k >= prices.size()) return solveMaxProfit(prices);
int n = prices.size(), g[k+1] = {0}, l[k+1] = {0};
for (int i = 1; i < prices.size(); ++i) {
int diff = prices[i]-prices[i-1];
for (int j = k; j >= 1; --j) {
l[j] = max(g[j-1]+max(diff,0), l[j]+diff);
g[j] = max(g[j], l[j]);
}
}
return g[k];
}
};
Solution 2: DP 6ms
version 1: 6ms Time Complexity: $$O(dayk)$$ Space Complexity: $$O(dayk)$$
class Solution {
int maxProfitUnlimitTran(vector<int>& prices) {
int res = 0;
for (int i = 1; i < prices.size(); ++i) {
if (prices[i] > prices[i-1])
res += prices[i] - prices[i-1];
}
return res;
}
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.size() < 2) return 0;
int n = prices.size();
if (k >= n) return maxProfitUnlimitTran(prices);
vector<vector<int>> dp(k+1, vector<int>(n,0));
for (int i = 1; i <= k; ++i) {
int maxDiff = -prices[0];
for (int j = 1; j < n; ++j) {
dp[i][j] = max(dp[i][j-1], prices[j]+maxDiff);
maxDiff = max(maxDiff, dp[i-1][j]-prices[j]);
}
}
return dp[k][n-1];
}
};
version 2: 6ms Time Complexity: $$O(day*k)$$ Space Complexity: $$O(day)$$
class Solution {
int maxProfitUnlimitTran(vector<int>& prices) {
int res = 0;
for (int i = 1; i < prices.size(); ++i) {
if (prices[i] > prices[i-1])
res += prices[i] - prices[i-1];
}
return res;
}
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.size() < 2) return 0;
int n = prices.size();
if (k >= n) return maxProfitUnlimitTran(prices);
vector<int> dp(n,0);
for (int i = 1; i <= k; ++i) {
int maxDiff = -prices[0];
int prev = dp[0];
for (int j = 1; j < n; ++j) {
prev = dp[j];
dp[j] = max(dp[j-1], prices[j]+maxDiff);
maxDiff = max(maxDiff, prev-prices[j]);
}
}
return dp[n-1];
}
};
version 3: slow 363ms Time Complexity: $$O(day^2k)$$ Space Complexity: $$O(dayk)$$
class Solution {
int maxProfitUnlimitTran(vector<int>& prices) {
int res = 0;
for (int i = 1; i < prices.size(); ++i) {
if (prices[i] > prices[i-1])
res += prices[i] - prices[i-1];
}
return res;
}
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.size() < 2) return 0;
int n = prices.size();
if (k >= n) return maxProfitUnlimitTran(prices);
vector<vector<int>> dp(k+1, vector<int>(n,0));
for (int i = 1; i <= k; ++i) {
int maxDiff = -prices[0];
for (int j = 1; j < n; ++j) {
int maxVal = 0;
for (int m = 0; m < j; ++m) {
maxVal = max(maxVal, prices[j]+dp[i-1][m]-prices[m]);
}
dp[i][j] = max(dp[i][j-1], maxVal);
}
}
return dp[k][n-1];
}
};