465. Optimal Account Balancing (Hard)
A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for Bill's lunch for $10. Then later Chris gave Alice $5 for a taxi ride. We can model each transaction as a tuple (x, y, z) which means person x gave person y $z. Assuming Alice, Bill, and Chris are person 0, 1, and 2 respectively (0, 1, 2 are the person's ID), the transactions can be represented as [[0, 1, 10], [2, 0, 5]]
.
Given a list of transactions between a group of people, return the minimum number of transactions required to settle the debt.
Note:
- A transaction will be given as a tuple (x, y, z). Note that
x ≠ y
andz > 0
. - Person's IDs may not be linear, e.g. we could have the persons 0, 1, 2 or we could also have the persons 0, 2, 6.
Example 1:
Input:
[[0,1,10], [2,0,5]]
Output:
2
Explanation:
Person #0 gave person #1 $10.
Person #2 gave person #0 $5.
Two transactions are needed. One way to settle the debt is person #1 pays person #0 and #2 $5 each.
Example 2:
Input:
[[0,1,10], [1,0,1], [1,2,5], [2,0,5]]
Output:
1
Explanation:
Person #0 gave person #1 $10.
Person #1 gave person #0 $1.
Person #1 gave person #2 $5.
Person #2 gave person #0 $5.
Therefore, person #1 only need to give person #0 $4, and all debt is settled.
Solution 1: Hash Table 9ms
我们使用一个哈希表来建立每个人和其账户的映射,其中账户若为正数,说明其他人欠你钱;如果账户为负数,说明你欠别人钱。我们对于每份账单,前面的人就在哈希表中减去钱数,后面的人在哈希表中加上钱数。这样我们每个人就都有一个账户了,然后我们接下来要做的就是合并账户,看最少需要多少次汇款。我们先统计出账户值不为0的人数,因为如果为0了,表明你既不欠别人钱,别人也不欠你钱,如果不为0,我们把钱数放入一个数组accnt中,然后调用递归函数。在递归函数中,我们初始化结果res为整型最大值,然后我们跳过为0的账户,然后我们开始遍历之后的账户,如果当前账户和之前账户的钱数正负不同的话,我们将前一个账户的钱数加到当前账户上,这很好理解,比如前一个账户钱数是-5,表示张三欠了别人五块钱,当前账户钱数是5,表示某人欠了李四五块钱,那么张三给李四五块,这两人的账户就都清零了。然后我们调用递归函数,此时从当前改变过的账户开始找,num表示当前的转账数,需要加1,然后我们用这个递归函数返回的结果来更新res,后面别忘了复原当前账户的值。遍历结束后,我们看res的值如果还是整型的最大值,说明没有改变过,我们返回num,否则返回res即可,参见代码如下:
检查当前交易次数,如果大于之前的结果,之前返回,速度会快很多。
class Solution {
void dfs(vector<int>& accnt, int start, int cnt, int& res) {
if (cnt >= res) return;
int n = accnt.size();
// current account has been settled up
while (start < n && accnt[start] == 0) ++start;
if (start == n) res = cnt;
// try to settle up account[start]
for (int i = start+1; i < n; ++i) {
if ((accnt[start] > 0 && accnt[i] < 0) || (accnt[start] < 0 && accnt[i] > 0)) {
// settle accout start
accnt[i] += accnt[start];
// recurion to settle next account
dfs(accnt, start+1, cnt+1, res);
accnt[i] -= accnt[start];
}
}
}
public:
int minTransfers(vector<vector<int>>& transactions) {
unordered_map<int, int> acc;
for (auto& trans: transactions) {
acc[trans[0]] -= trans[2];
acc[trans[1]] += trans[2];
}
vector<int> accnt;
for (auto x : acc) {
// remove settled up accounts
if (x.second != 0) accnt.push_back(x.second);
}
if (accnt.size() == 0) return 0;
int res = accnt.size()-1;
dfs(accnt, 0, 0, res);
return res;
}
};
Solution 2: Hash Table 3ms
class Solution {
public:
int minTransfers(vector<vector<int>>& transactions) {
unordered_map<int, int> mp;
for (auto x : transactions) {
mp[x[0]] -= x[2];
mp[x[1]] += x[2];
}
vector<int> in;
vector<int> out;
for (auto x : mp) {
if (x.second < 0) out.push_back(x.second);
else if (x.second > 0) in.push_back(x.second);
}
// maximum possible transcations
int res = in.size()+out.size()-1;
dfs(in, out, 0, 0, res);
return res;
}
void dfs(vector<int> &in, vector<int> &out, int s1, int s2, int cnt, int& res) {
if (cnt > res) return;
int res = INT_MAX, n = in.size();
while (s1 < n && in[s1] == 0) ++s1;
if (s1 == n) return 0;
for (int i = s2; i < out.size(); ++i) {
}
return res;
}
};