74. Search a 2D Matrix (Medium)
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3
, return true
.
Solution 1: 9ms
把矩阵的各行连接成一个数列,然后用二分查找法。这样的复杂度是O(log(m*n))。
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.empty() || matrix[0].empty()) return false;
int m = matrix.size(), n = matrix[0].size();
int i = 0, j = m*n-1;
while (i <= j) {
int mid = i+(j-i)/2;
int x = mid/n, y = mid%n;
if (matrix[x][y] == target) return true;
else if (target < matrix[x][y]) --j;
else ++i;
}
return false;
}
};
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0) return false;
int m = matrix.length, n = matrix[0].length;
int l = 0, r = m*n-1;
while (l <= r) {
int mid = (l+r)/2;
int row = mid/n, col = mid%n;
if (matrix[row][col] < target) l = mid+1;
else if (matrix[row][col] > target) r = mid-1;
else return true;
}
return false;
}
}
Solution 2:
现在考虑先用二分查找法确定target在哪一行,然后对该行进行二分查找,这样复杂度为$$O(logm + logn)$$,和解法一一样。
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0) return false;
int m = matrix.length, n = matrix[0].length;
int l = 0, r = m-1;
while (l+1 < r) { // at least 3 items
int mid = (l+r)/2;
if (matrix[mid][0] < target) l = mid;
else if (matrix[mid][0] > target) r = mid;
else return true;
}
int row;
if (matrix[l][n-1] > target) row = l;
else if (matrix[l][n-1] < target) row = r;
else return true;
l = 0; r = n-1;
while (l <= r) {
int mid = (l+r)/2;
if (matrix[row][mid] < target) l = mid+1;
else if (matrix[row][mid] > target) r = mid-1;
else return true;
}
return false;
}
}