399. Evaluate Division (Medium)
Equations are given in the format A / B = k
, where A
and B
are variables represented as strings, and k
is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0
.
Example:
Given a / b = 2.0, b / c = 3.0
.
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
.
return [6.0, 0.5, -1.0, 1.0, -1.0 ]
.
The input is: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries
, where equations.size() == values.size()
, and the values are positive. This represents the equations. Return vector<double>
.
According to the example above:
equations = [ ["a", "b"], ["b", "c"] ],
values = [2.0, 3.0],
queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].
The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.
Solution 1: DFS 0ms
class Solution {
double dfs (string s, string t, unordered_map<string, unordered_map<string, double>>& m, unordered_set<string> &visited, double val) {
if (m[s].count(t)) return val*m[s][t];
for (auto& p: m[s]) {
if (visited.count(p.first) == 0) {
visited.insert(p.first);
double tmp = dfs(p.first, t, m, visited, val*p.second);
if (tmp != -1.0) return tmp;
}
}
return -1.0;
}
public:
vector<double> calcEquation(vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries) {
unordered_map<string, unordered_map<string, double>> m;
vector<double> res(queries.size(), -1);
for (int i = 0; i < equations.size(); ++i) {
string s = equations[i].first, t = equations[i].second;
m[s][t] = values[i];
m[t][s] = 1/values[i];
}
for (int i = 0; i < queries.size(); ++i) {
string s = queries[i].first, t = queries[i].second;
if (m.count(s) && m.count(t)) {
if (s == t) res[i] = 1.0;
else {
unordered_set<string> visited;
visited.insert(s);
res[i] = dfs(s, t, m, visited, 1.0);
// add answer to map for future use
if (res[i] != -1.0) {
m[s][t] = res[i];
m[t][s] = 1/res[i];
}
}
}
}
return res;
}
};
Solution 2: BFS 3ms
此题还有迭代的写法,用邻接列表的表示方法建立了一个图,然后进行bfs搜索,需要用queue来辅助运算,参见代码如下:
class Solution {
public:
vector<double> calcEquation(vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries) {
unordered_map<string, unordered_map<string, double>> m;
vector<double> res(queries.size(), -1);
for (int i = 0; i < equations.size(); ++i) {
string s = equations[i].first, t = equations[i].second;
m[s][t] = values[i];
m[t][s] = 1/values[i];
}
for (int i = 0; i < queries.size(); ++i) {
string s = queries[i].first, t = queries[i].second;
if (m.count(s) && m.count(t)) {
if (s == t) res[i] = 1.0;
else if (m[s].count(t)) res[i] = m[s][t];
else {
queue<pair<string, double>> q;
unordered_set<string> visited{s};
q.push({s, 1.0});
while (!q.empty()) {
auto f = q.front(); q.pop();
// find path
if (f.first == t) {
res[i] = f.second;
// store result to map for future use
m[s][t] = f.second;
m[t][s] = 1/f.second;
break;
}
for (auto& p: m[f.first]) {
if (visited.count(p.first) == 0) {
visited.insert(p.first);
q.push({p.first, p.second*f.second});
}
}
}
}
}
}
return res;
}
};
Solution 3: Union-find