62. Unique Paths (Medium)
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Solution 1: DP
这道题让求所有不同的路径的个数,一开始还真把我难住了,因为之前好像没有遇到过这类的问题,所以感觉好像有种无从下手的感觉。在网上找攻略之后才恍然大悟,原来这跟之前那道 Climbing Stairs 爬梯子问题 很类似,那道题是说可以每次能爬一格或两格,问到达顶部的所有不同爬法的个数。而这道题是每次可以向下走或者向右走,求到达最右下角的所有不同走法的个数。那么跟爬梯子问题一样,我们需要用动态规划Dynamic Programming来解,我们可以维护一个二维数组dp,其中dp[i][j]表示到当前位置不同的走法的个数,然后可以得到递推式为: dp[i][j] = dp[i - 1][j] + dp[i][j - 1],这里为了节省空间,我们使用一维数组dp,一行一行的刷新也可以,代码如下:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> dp(n,1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[j] = dp[j-1]+dp[j];
}
}
return dp[n-1];
}
};
Solution 2: Math
这道题其实还有另一种很数学的解法,参见网友Code Ganker的博客,实际相当于机器人总共走了m + n - 2步,其中m - 1步向下走,n - 1步向右走,本质上就是一个组合问题,也就是从m+n-2个不同元素中每次取出m-1个元素的组合数。
class Solution {
public:
int uniquePaths(int m, int n) {
int N = m+n-2, K = min(m-1, n-1);
long dom = 1, dedom = 1;
for (int i = 1; i <= K; ++i) {
dedom *= i;
dom *= N; N--;
}
return dom/dedom;
}
};