216. Combination Sum III (Medium)

Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

Example 1:

Input: k = 3, n = 7

Output:

[[1,2,4]]

Example 2:

Input: k = 3, n = 9

Output:

[[1,2,6], [1,3,5], [2,3,4]]

Solution:

这道题题是组合之和系列的第三道题,跟之前两道Combination Sum 组合之和,Combination Sum II 组合之和之二都不太一样,那两道的联系比较紧密,变化不大,而这道跟它们最显著的不同就是这道题的个数是固定的,为k。个人认为这道题跟那道Combinations 组合项更相似一些,但是那道题只是排序,对k个数字之和又没有要求。所以实际上这道题是它们的综合体,两者杂糅到一起就是这道题的解法了,n是k个数字之和,如果n小于0,则直接返回,如果n正好等于0,而且此时out中数字的个数正好为k,说明此时是一个正确解,将其存入结果res中,具体实现参见代码入下:

class Solution {
    void dfs(int k, int n, vector<int>& out, int pos, vector<vector<int>>& res) {
        if (k == 0 && n == 0) { res.push_back(out); return; }
        if (k == 0 || n == 0) return;

        for (int i = pos; i <= 9 && i <= n; ++i) {
            out.push_back(i);
            dfs(k-1, n-i, out, i+1, res);
            out.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum3(int k, int n) {
        vector<vector<int>> res;
        vector<int> out;
        dfs(k, n, out, 1, res);
        return res;
    }
};

results matching ""

    No results matching ""