265. Paint House II
There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x k
cost matrix. For example, costs[0][0]
is the cost of painting house 0 with color 0; costs[1][2]
is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.
Note: All costs are positive integers.
Follow up: Could you solve it in O(nk) runtime?
Solution: DP
这道题是之前那道Paint House的拓展,那道题只让用红绿蓝三种颜色来粉刷房子,而这道题让我们用k种颜色,这道题不能用之前那题的解法,会TLE。这题的解法的思路还是用DP,但是在找不同颜色的最小值不是遍历所有不同颜色,而是用min1和min2来记录之前房子的最小和第二小的花费的颜色,如果当前房子颜色和min1相同,那么我们用min2对应的值计算,反之我们用min1对应的值,这种解法实际上也包含了求次小值的方法,感觉也是一种很棒的解题思路,参见代码如下:
version 1: 16ms
class Solution {
public:
int minCostII(vector<vector<int>>& costs) {
if (costs.empty() || costs[0].empty()) return 0;
int n = costs.size(), k = costs[0].size();
int min1 = -1, min2 = -1;
vector<vector<int>> dp = costs;
for (int i = 0; i < n; ++i) {
int last1 = min1, last2 = min2;
min1 = min2 = -1;
for (int j = 0; j < k; ++j) {
if (j != last1) {
dp[i][j] += last1 < 0 ? 0:dp[i-1][last1];
} else {
dp[i][j] += last2 < 0 ? 0:dp[i-1][last2];
}
// update min1 and min2
if (min1 < 0 || dp[i][j] < dp[i][min1]) {
min2 = min1;
min1 = j;
} else if (min2 < 0 || dp[i][j] < dp[i][min2]) {
min2 = j;
}
}
}
return dp.back()[min1];
}
};
version 2: 16ms
下面这种解法不需要建立二维dp数组,直接用三个变量就可以保存需要的信息即可,参见代码如下:
class Solution {
public:
int minCostII(vector<vector<int>>& costs) {
if (costs.empty() || costs[0].empty()) return 0;
int n = costs.size(), k = costs[0].size();
int min1 = 0, min2 = 0, idx = -1;
for (int i = 0; i < n; ++i) {
int m1 = INT_MAX, m2 = INT_MAX, id1 = -1;
for (int j = 0; j < k; ++j) {
int cost = costs[i][j]+(j == idx ? min2:min1);
if (cost < m1) {
m2 = m1;
m1 = cost;
id1 = j;
} else if (cost < m2) {
m2 = cost;
}
}
min1 = m1, min2 = m2, idx = id1;
}
return min1;
}
};