218. The Skyline Problem (Hard)
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).
The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi]
, where Li
and Ri
are the x coordinates of the left and right edge of the ith building, respectively, and Hi
is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX
, 0 < Hi ≤ INT_MAX
, and Ri - Li > 0
. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.
For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ]
.
The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ]
that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.
For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ]
.
Notes:
- The number of buildings in any input list is guaranteed to be in the range
[0, 10000]
. - The input list is already sorted in ascending order by the left x position
Li
. - The output list must be sorted by the x position.
- There must be no consecutive horizontal lines of equal height in the output skyline. For instance,
[...[2 3], [4 5], [7 5], [11 5], [12 7]...]
is not acceptable; the three lines of height 5 should be merged into one in the final output as such:[...[2 3], [4 5], [12 7], ...]
Solution: Heap
Time Complexity: O(nlogn)+O(n) - sort + scan
我们通过仔细观察题目中给的那个例子可以发现,要求的红点都跟每个小区间的左右区间点有密切的关系,而且进一步发现除了每一个封闭区间的最右边的结束点是楼的右边界点,其余的都是左边界点,而且每个红点的纵坐标都是当前重合处的最高楼的高度。
这里用到了multiset数据结构,其好处在于其中的元素是按堆排好序的,插入新元素进去还是有序的,而且执行删除元素也可方便的将所有相同的元素删掉。这里为了区分左右边界,将左边界的高度存为负数,这样遇到左边界就存入堆中,遇到右边界就删掉,然后看当前状态有无改变,改变了话就把左边界和当前的高度存入结果中,具体实现参看代码如下:
Note:
左边的高度存成负数还有一个好处:sort的时候,当左端点相同时,实际存的是较高building的高度
左端点表示这个building高度开始的时间。set里存的是当前所有依然存在的buildings的高度,我们每次都选高度最高的buildin。当遇到右端点,说明这个building不再存在,可以把他的高度从set里删去。
每经过一个<端点,高度> pair,我们比较一下高度有没有变化,有变化就是key point,并存下。
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<pair<int, int>> h, res;
for (auto &a: buildings) {
h.push_back({a[0], -a[2]}); // if left end is the same, put higher one before
h.push_back({a[1], a[2]});
}
sort(h.begin(), h.end());
multiset<int> m; m.insert(0);
int pre = 0, cur = 0;
for (auto &a: h) {
if (a.second < 0) m.insert(-a.second);
else m.erase(m.find(a.second)); // current building has been passed
cur = *m.rbegin(); // current hightest wall
if (cur != pre) {
res.push_back({a.first, cur});
pre = cur;
}
}
return res;
}