84. Largest Rectangle in Histogram (Hard)
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
The largest rectangle is shown in the shaded area, which has area = 10 unit.
For example, Given heights = [2,1,5,6,2,3], return 10.
这里维护一个栈,用来保存递增序列,相当于上面那种方法的找局部峰值,当当前值小于栈顶值时,取出栈顶元素,然后计算当前矩形面积,然后再对比当前值和新的栈顶值大小,若还是栈顶值大,则再取出栈顶,算此时共同矩形区域面积,照此类推,可得最大矩形。代码如下:
int largestRectangleArea(vector<int>& heights) {
int area = 0;
stack<int> s;
heights.push_back(0); // ensure all heights stored in s are checked
for (int i = 0; i < heights.size(); ++i) {
while (!s.empty() && heights[s.top()] >= heights[i]) {
int top = heights[s.top()]; s.pop();
area = max(area, top*(s.empty() ? i:i-s.top()-1));
}
s.push(i);
}
return area;
}
// use vector instead of stack
int largestRectangleArea(vector<int>& heights) {
heights.push_back(0); // ensure all heights stored in s are checked
int area = 0, n = heights.size(), end = -1;
vector<int> s(n);
for (int i = 0; i < heights.size(); ++i) {
while (end != -1 && heights[s[end]] >= heights[i]) {
int top = heights[s[end]]; --end;
area = max(area, top*(end == -1 ? i:i-s[end]-1));
}
s[++end] = i;
}
return area;
}