333. Largest BST Subtree (Medium)
Given a binary tree, find the largest subtree which is a Binary Search Tree (BST), where largest means subtree with largest number of nodes in it.
Note:
A subtree must include all of its descendants.
Here's an example:
10
/ \
5 15
/ \ \
1 8 7
The Largest BST Subtree in this case is the highlighted one.
5
/ \
1 8
The return value is the subtree's size, which is 3.
Hint:
- You can recursively use algorithm similar to 98. Validate Binary Search Tree at each node of the tree, which will result in O(nlogn) time complexity.
Follow up:
Can you figure out ways to solve it with O(n) time complexity?
Solution 1: DFS 9ms
Time Complexity: $$O(n^2)$$
这道题让我们求一棵二分树的最大二分搜索子树,所谓二分搜索树就是满足左<根<右的二分树,我们需要返回这个二分搜索子树的节点个数。题目中给的提示说我们可以用之前那道Validate Binary Search Tree的方法来做,时间复杂度为O(n2),这种方法是把每个节点都当做根节点,来验证其是否是二叉搜索数,并记录节点的个数,若是二叉搜索树,就更新最终结果,参见代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
int countBFS(TreeNode* root, int mn, int mx) {
if (!root) return 0;
if (root->val <= mn || root->val >= mx) return -1;
int left = countBFS(root->left, mn, root->val);
if (left == -1) return -1;
int right = countBFS(root->right, root->val, mx);
if (right == -1) return -1;
return left+right+1;
}
void dfs(TreeNode* root, int& res) {
if (!root) return;
int d = countBFS(root, INT_MIN, INT_MAX);
if (d != -1) {
res = max(res, d);
return;
}
dfs(root->left, res);
dfs(root->right, res);
}
public:
int largestBSTSubtree(TreeNode* root) {
int res = 0;
dfs(root, res);
return res;
}
};
Solution 2: DFS 9ms
Time Complexity: $$O(n^2)$$
下面我们来看一种更简洁的写法,对于每一个节点,都来验证其是否是BST,如果是的话,我们就统计节点的个数即可,参见代码如下:
class Solution {
int count(TreeNode* root) {
if (!root) return 0;
return count(root->left)+count(root->right)+1;
}
bool isValid(TreeNode* root, int mn, int mx) {
if (!root) return true;
if (root->val <= mn || root->val >= mx) return false;
return isValid(root->left, mn, root->val) && isValid(root->right, root->val, mx);
}
public:
int largestBSTSubtree(TreeNode* root) {
if (!root) return 0;
if (isValid(root, INT_MIN, INT_MAX)) return count(root);
return max(largestBSTSubtree(root->left), largestBSTSubtree(root->right));
}
};
Solution 3: DSF 9ms
题目中的Follow up让我们用O(n)的时间复杂度来解决问题,我们还是采用DFS的思想来解题,由于时间复杂度的限制,只允许我们遍历一次整个二叉树,由于满足题目要求的 二叉搜索子树必定是有叶节点的,所以我们的思路就是先递归到最左子节点,然后逐层往上递归,对于每一个节点,我们都记录当前最大的BST的节点数,当做为左子树的最大值,和做为右子树的最小值,当每次遇到左子节点不存在或者当前节点值大于左子树的最大值,且右子树不存在或者当前节点值小于右子树的最小数时,说明BST的节点数又增加了一个,我们更新结果及其参数,如果当前节点不是BST的节点,那么我们更新BST的节点数res为左右子节点的各自的BST的节点数的较大值,参见代码如下:
class Solution {
// post traverse
bool isValidBST(TreeNode* root, int& mn, int& mx, int& res) {
if (!root) return true;
int left_n = 0, right_n = 0;
int left_mn = INT_MIN, left_mx = INT_MAX;
int right_mn = INT_MIN, right_mx = INT_MAX;
bool left = isValidBST(root->left, left_mn, left_mx, left_n);
bool right = isValidBST(root->right, right_mn, right_mx, right_n);
if (left && right) {
if ((!root->left || root->val > left_mx) && (!root->right || root->val < right_mn)) {
res = left_n+right_n+1;
mn = root->left ? left_mn:root->val;
mx = root->right ? right_mx:root->val;
return true;
}
}
res = max(left_n, right_n);
return false;
}
public:
int largestBSTSubtree(TreeNode* root) {
int res = 0, mn = INT_MIN, mx = INT_MAX;
bool d = isValidBST(root, mn, mx, res);
return res;
}
};