63. Unique Paths II (Medium)
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
Solution: DP
Denote the number of paths to arrive at point (i, j)
to be P[i][j]
, the state equation is P[i][j] = P[i - 1][j] + P[i][j - 1]
if obstacleGrid[i][j] != 1
and 0
otherwise.
version 1: 3ms Time Complexity: $$O(mn)$$ Space Complexity: $$O(mn)$$
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[0].empty() || obstacleGrid[0][0] == 1) return 0;
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int>> dp(m,vector<int>(n,0));
for (int i = 0; i < n; ++i) {
if (obstacleGrid[0][i] == 1) break;
dp[0][i] = 1;
}
for (int i = 0; i < m; ++i) {
if (obstacleGrid[i][0] == 1) break;
dp[i][0] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = obstacleGrid[i][j] == 1 ? 0:dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[0].empty() || obstacleGrid[0][0] == 1) return 0;
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int>> dp(m+1,vector<int>(n+1,0));
dp[0][1] = 1;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (!obstacleGrid[i-1][j-1]) dp[i][j] = dp[i-1][j]+dp[i][j-1];
}
}
return dp[m][n];
}
};
version 2: 3ms Time Complexity: $$O(m*n)$$ Space Complexity: $$O(n)$$
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[0].empty() || obstacleGrid[0][0] == 1) return 0;
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<int> dp(n,0);
for (int i = 0; i < n; ++i) {
if (obstacleGrid[0][i]) break;
dp[i] = 1;
}
int prev = 0;
for (int i = 1; i < m; ++i) {
prev = dp[0];
if (obstacleGrid[i][0] == 1) dp[0] = 0;
else dp[0] = prev;
for (int j = 1; j < n; ++j) {
prev = dp[j];
if (!obstacleGrid[i][j]) dp[j] = prev+dp[j-1];
else dp[j] = 0;
}
}
return dp[n-1];
}
};