421. Maximum XOR of Two Numbers in an Array (Medium)
Given a non-empty array of numbers, $$a0, a_1, a_2, … , a{n-1},$$ where $$0 ≤ a_i < 2^{31}$$.
Find the maximum result of $$ai$$ XOR $$a_j$$, where 0 ≤ _i, j < n.
Could you do this in O(n) runtime?
Example:
Input: [3, 10, 5, 25, 2, 8]
Output: 28
Explanation: The maximum result is 5 ^ 25 = 28.
Solution 1: Brute Force TLE
Time Complexity: $$O(n^2)$$
class Solution {
public:
int findMaximumXOR(vector<int>& nums) {
int res = 0;
for (int i = 0; i < nums.size(); ++i) {
for (int j = i+1; j < nums.size(); ++j) {
res = max((nums[i] ^ nums[j]), res);
}
}
return res;
}
};
Solution 2: Bit Manipulation 272ms
Time Complexity: $$O(32n)$$
这道题是一道典型的位操作Bit Manipulation的题目,我开始以为异或值最大的两个数一定包括数组的最大值,但是OJ给了另一个例子{10,23,20,18,28},这个数组的异或最大值是10和20异或,得到30。那么只能另辟蹊径,正确的做法是按位遍历,题目中给定了数字的返回不会超过$$2^{31}$$,那么最多只能有32位,我们用一个从左往右的mask,用来提取数字的前缀,然后将其都存入set中,我们用一个变量t,用来验证当前位为1再或上之前结果res,看结果和set中的前缀异或之后在不在set中,这里用到了一个性质,若a^b=c,那么a=b^c,因为t是我们要验证的当前最大值,所以我们遍历set中的数时,和t异或后的结果仍在set中,说明两个前缀可以异或出t的值,所以我们更新res为t,继续遍历,如果上述讲解不容易理解,那么建议自己带个例子一步一步试试,并把每次循环中set中所有的数字都打印出来,基本应该就能理解了,参见代码如下:
class Solution {
public:
int findMaximumXOR(vector<int>& nums) {
int max = 0, mask = 0;
// search from left to right, find out for each bit is there
// two numbers that has different value
for (int i = 31; i >= 0; i--){
// mask contains the bits considered so far
mask |= (1 << i);
unordered_set<int> t;
// store prefix of all number with right i bits discarded
for (int n: nums){
t.insert(mask & n);
}
// now find out if there are two prefix with different i-th bit
// if there is, the new max should be current max with one 1 bit at i-th position, which is candidate
// and the two prefix, say A and B, satisfies:
// A ^ B = candidate
// so we also have A ^ candidate = B or B ^ candidate = A
// thus we can use this method to find out if such A and B exists in the set
int candidate = max | (1<<i);
for (int prefix : t){
if (t.find(prefix ^ candidate) != t.end()){
max = candidate;
break;
}
}
}
return max;
}
};
Solution 3: Trie 59ms
class Solution {
struct TrieNode {
TrieNode* children[2];
TrieNode() {
for (int i = 0; i < 2; ++i) {
children[i] = nullptr;
}
}
};
public:
int findMaximumXOR(vector<int>& nums) {
TrieNode* root = new TrieNode();
for (int num: nums) {
TrieNode* cur = root;
for (int i = 31; i >= 0; --i) {
int curBit = (num >> i) & 1;
if (cur->children[curBit] == nullptr) {
cur->children[curBit] = new TrieNode();
}
cur = cur->children[curBit];
}
}
int res = 0;
for (int num: nums) {
TrieNode* cur = root; // x ^ num: to find cur max
int curSum = 0;
for (int i = 31; i >= 0; --i) {
int curBit = (num >> i) & 1;
if (cur->children[curBit ^ 1]) {
curSum |= (1 << i);
cur = cur->children[curBit ^ 1];
} else {
cur = cur->children[curBit];
}
}
res = max(curSum, res);
}
return res;
}
};