51. N-Queens (Hard)
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example, There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Solution: Backtracking
经典的N皇后问题,基本所有的算法书中都会包含的问题,经典解法为回溯递归,一层一层的向下扫描,需要用到一个pos数组,其中pos[i]表示第i行皇后的位置,初始化为-1,然后从第0开始递归,每一行都一次遍历各列,判断如果在该位置放置皇后会不会有冲突,以此类推,当到最后一行的皇后放好后,一种解法就生成了,将其存入结果res中,然后再还会继续完成搜索所有的情况,代码如下:
version 1: 3ms
class Solution {
void helper(vector<vector<string>>& res, int n, int r, vector<int>& pos) {
if (r == n) {
vector<string> out(n, string(n,'.'));
for (int i = 0; i < n; ++i) out[i][pos[i]] = 'Q';
res.push_back(out);
return;
}
for (int col = 0; col < n; ++col) {
int row = 0;
for (; row < r; ++row) {
if (pos[row] == col || abs(col-pos[row]) == abs(r-row)) break;
}
if (row == r) {
pos[r] = col;
helper(res, n, r+1, pos);
pos[r] = -1;
}
}
}
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> res;
vector<int> pos(n,-1);
helper(res, n, 0, pos);
return res;
}
};