98. Validate Binary Search Tree (Medium)
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
2
/ \
1 3
Binary tree [2,1,3]
, return true.
Example 2:
1
/ \
2 3
Binary tree [1,2,3]
, return false.
Solution 1: Range Search 12ms
这道验证二叉搜索树有很多种解法,可以利用它本身的性质来做,即左<根<右,也可以通过利用中序遍历结果为有序数列来做,下面我们先来看最简单的一种,就是利用其本身性质来做,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件,代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
bool helper(TreeNode* root, long min, long max) {
if (!root) return true;
if (min >= root->val || max <= root->val) return false;
return helper(root->left, min, root->val) && helper(root->right, root->val, max);
}
public:
bool isValidBST(TreeNode* root) {
return helper(root, LONG_MIN, LONG_MAX);
}
};
Solution 2: Inorder Traverse
这题实际上简化了难度,因为一般的二叉搜索树是左<=根<右,而这道题设定为左<根<右,那么就可以用中序遍历来做。因为如果不去掉左=根这个条件的话,那么下边两个数用中序遍历无法区分:
20 20
/ \
20 20
它们的中序遍历结果都一样,但是左边的是BST,右边的不是BST。去掉等号的条件则相当于去掉了这种限制条件。下面我们来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的,代码如下:
class Solution {
public:
bool isValidBST(TreeNode *root) {
if (!root) return true;
vector<int> vals;
inorder(root, vals);
for (int i = 0; i < vals.size() - 1; ++i) {
if (vals[i] >= vals[i + 1]) return false;
}
return true;
}
void inorder(TreeNode *root, vector<int> &vals) {
if (!root) return;
inorder(root->left, vals);
vals.push_back(root->val);
inorder(root->right, vals);
}
};
Solution 3:
下面这种解法跟上面那个很类似,都是用递归的中序遍历,但不同之处是不将遍历结果存入一个数组遍历完成再比较,而是每当遍历到一个新节点时和其上一个节点比较,如果不大于上一个节点那么则返回false,全部遍历完成后返回true。代码如下:
// Still recursion
class Solution {
public:
TreeNode *pre;
bool isValidBST(TreeNode *root) {
int res = 1;
pre = NULL;
inorder(root, res);
if (res == 1) return true;
else false;
}
void inorder(TreeNode *root, int &res) {
if (!root) return;
inorder(root->left, res);
if (!pre) pre = root;
else {
if (root->val <= pre->val) res = 0;
pre = root;
}
inorder(root->right, res);
}
};
当然这道题也可以用非递归来做,需要用到栈,因为中序遍历可以非递归来实现,所以只要在其上面稍加改动便可,代码如下:
// Non-recursion with stack
class Solution {
public:
bool isValidBST(TreeNode* root) {
stack<TreeNode*> s;
TreeNode *p = root, *pre = NULL;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
TreeNode *t = s.top(); s.pop();
if (pre && t->val <= pre->val) return false;
pre = t;
p = t->right;
}
return true;
}
};
Solution 4:
最后还有一种方法,由于中序遍历还有非递归且无栈的实现方法,称之为Morris遍历,可以参考我之前的博客 Binary Tree Inorder Traversal 二叉树的中序遍历,这种实现方法虽然写起来比递归版本要复杂的多,但是好处在于是O(1)空间复杂度,但是我的实现方法在本机上测试都能通过,在OJ上测试却有Runtime error,我找来找去不知道问题在哪,不管了先贴上来,说不定能引起某位大神的注意,帮小弟改一改哈~
// Non-recursion without stack, I don't know why it cannot pass OJ, which show Runtime error. Can anyone help me fix it? Thanks!
class Solution {
public:
bool isValidBST(TreeNode *root) {
if (!root) return true;
TreeNode *cur, *pre, *parent = NULL;
cur = root;
while (cur) {
if (!cur->left) {
if (parent && parent->val >= cur->val) return false;
parent = cur;
cur = cur->right;
} else {
pre = cur->left;
while (pre->right && pre->right != cur) pre = pre->right;
if (!pre->right) {
pre->right = cur;
cur = cur->left;
} else {
pre->right = NULL;
if (parent->val >= cur->val) return false;
parent = cur;
cur = cur->right;
}
}
}
return true;
}
};