248. Strobogrammatic Number III (Hard)
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Write a function to count the total strobogrammatic numbers that exist in the range of low <= num <= high.
For example,
Given low = "50", high = "100", return 3. Because 69, 88, and 96 are three strobogrammatic numbers.
Note: Because the range might be a large number, the low and high numbers are represented as string.
Solution 1: Math, Recursion DFS
这道题是之前那两道Strobogrammatic Number II和Strobogrammatic Number的拓展,又增加了难度,让我们找到给定范围内的对称数的个数,我们当然不能一个一个的判断是不是对称数,我们也不能直接每个长度调用第二道中的方法,保存所有的对称数,然后再统计个数,这样OJ会提示内存超过允许的范围,所以我们的解法是基于第二道的基础上,不保存所有的结果,而是在递归中直接计数,根据之前的分析,需要初始化n=0和n=1的情况,然后在其基础上进行递归,递归的长度len从low到high之间遍历,然后我们看当前单词长度有没有达到len,如果达到了,我们首先要去掉开头是0的多位数,然后去掉长度和low相同但小于low的数,和长度和high相同但大于high的数,然后结果自增1,然后分别给当前单词左右加上那五对对称数,继续递归调用,参见代码如下:
version 1: 19ms
class Solution {
void find(string& low, string& high, string path, int len, int& res) {
if (path.size() == len) {
if ((len == low.size() && path < low) || (len == high.size() && path > high)) return;
++res;
return;
}
if (path.size()+2 < len) find(low, high, '0'+path+'0', len, res);
find(low, high, '1'+path+'1', len, res);
find(low, high, '8'+path+'8', len, res);
find(low, high, '6'+path+'9', len, res);
find(low, high, '9'+path+'6', len, res);
}
public:
int strobogrammaticInRange(string low, string high) {
int res = 0;
for (int i = low.size(); i <= high.size(); ++i) {
if (i%2) {
find(low, high, "0", i, res);
find(low, high, "1", i, res);
find(low, high, "8", i, res);
} else find(low, high, "", i, res);
}
return res;
}
};
version 2: 32ms
上述代码可以稍微优化一下,得到如下的代码:
class Solution {
public:
int strobogrammaticInRange(string low, string high) {
int res = 0;
find(low, high, "", res);
find(low, high, "0", res);
find(low, high, "1", res);
find(low, high, "8", res);
return res;
}
void find(string low, string high, string path, int &res) {
if (path.size() >= low.size() && path.size() <= high.size()) {
if ((path.size() == low.size() && path < low) || (path.size() == high.size() && path > high)) return;
if (!(path.size() > 1 && path[0] == '0')) ++res;
}
if (path.size()+2 > high.size()) return;
if (path.size() + 2 < high.size()) find(low, high, "0" + path + "0", res);
find(low, high, "1" + path + "1", res);
find(low, high, "6" + path + "9", res);
find(low, high, "8" + path + "8", res);
find(low, high, "9" + path + "6", res);
}
};